Modèles de propagation des agents pathogènes en population animale

BIOEPAR développe des modèles de simulation qui permettent d’anticiper la propagation d’agents pathogènes sous un large panel de situations contrastées et à différentes échelles (lot d'animaux, troupeau, région, filière de production), ainsi que la dynamique de population de leurs vecteurs le cas échéant. Ces modèles permettent de mieux cibler les stratégies de surveillance de la (ré-)émergence de maladies animales, et de prioriser les interventions pour limiter l’impact socio-économique, et sur la santé et le bien-être des animaux, de la propagation des maladies25. Certains modèles tiennent compte du processus de prise de décision par les gestionnaires de la santé (éleveurs, groupements, décideurs publics).

Plus particulièrement, nous développons des suites logicielles et des modèles mécanistes, souvent stochastiques, appliqués à diverses maladies animales ou vecteurs :

* Logiciels & algorithmes transverses

            - EMULSION47

            - PASTE45

            - Propagation sur réseau & orientation des mouvements basée sur le risque épidémiologique42

            - Transmissio : visualisation de données

            - package R d’inférence bayésienne BRREWABC “Batched Resilient and Rapid Estimation Workflow through Approximate Bayesian Computation"

 * Modèles à l'échelle régionale / filière de production

            - entre troupeaux bovins :

                  BVD49

                  FCO14

                  FQ44

                  PTB4,5,23

                  Algorithmes d’organisation des mouvements de jeunes bovins entre élevages naisseurs et engraisseurs41, 43

            - entre troupeaux porcins : portage de Salmonnelles27,36

            - multi-espèces d’hôtes :

                  FCO15

                  FVR9,12

                  PPA2,26,48 : ASF Challenge 2020 ; ASF Challenge INRAE team

            - en milieu aquatique : Vibrio aestuarianus dans une population d’huîtres spatialisée34

* Modèles à l'échelle troupeau

            - troupeau bovin :

                  BVD1,21,22 : Within herd model ; Farmer decisions

                  FQ16-18

                  PTB6,8,38_40

                  Sélection génétique

            - troupeau porcin :

                  SDRP

                  portage de Salmonelles37

            - faune sauvage : pestivirus dans une population d'isards3,33

* Modèles à l'échelle lot

            - lot de jeunes bovins : BRD46,50

            - Vibrio aestuarianus dans une population d’huîtres en aquarium35

* Modèles à l'échelle intra-hôte

            - réponse immunitaire des macrophages à l'infection par le virus du SDRP28

            - dynamique d’infection intra-hôte et intra-vecteur du virus de la FVR13

            - dynamique d’infection virale intra-moustique (en cours)

            - réponse d’un nœud lymphatique à une induction d’antigène (en cours)

* Modèles de décision

            - couplage de modèles épidémiologiques et de décisions individuelles d’intervention : cadre générique19 ; Application à la BVD21

            - décision collective : gestion du SDRP52 ; cadre générique20

* Modèles de dynamique de population de vecteurs

            - Moustiques7,24,51

            - Tsétsé10,11

            - Tiques32 et maladies transmises : babésiose bovine31 et CCHF29-30

[Abréviations des maladies : BRD = maladie respiratoire des bovins, BVD = diarrhée virale bovine, CCHF = fièvre hémorragique de Crimée-Congo, FCO = fièvre catarrhale ovine, FQ = fièvre Q, FVR = fièvre de la vallée du Rift, PPA = peste porcine africaine, PTB = paratuberculose bovine, SDRP = syndrome dysgénésique respiratoire porcin]

 

Pour tout intérêt pour l'un ou l'autre de ces modèles, n'hésitez pas à contacter Sébastien Picault

 

Références

  1. Arnoux S., Bidan F., Damman A., Petit E., Assié S., Ezanno P. 2021. To vaccinate or not: impact of bovine viral diarrhoea in French cow-calf herds. Vaccines 9(10), 1137. https://doi.org/10.3390/vaccines9101137
  2. Beaunée G., Deslandes F., Vergu E., 2023. Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. Epidemics 42, 100665. https://doi.org/10.1016/j.epidem.2023.100665
  3. Beaunée G., Gilot-Fromont E., Garel M., Ezanno P. 2015. Seasonal spread of a Pestivirus in a structured Pyrenean chamois population. Vet Res 46(1):86, doi:10.1186/s13567-015-0218-8
  4. Beaunée G., Vergu E., Ezanno P. 2015. Modelling of paratuberculosis spread between dairy cattle farms at a regional scale. Vet Res 46:111, doi:10.1186/s13567-015-0247-3
  5. Beaunée G., Vergu E., Joly A., Ezanno P. 2017. Controlling bovine paratuberculosis at a regional scale: towards a decision modeling tool. J Theor Biol 435:157-183, doi:10.1016/j.jtbi.2017.09.012
  6. Ben Romdhane R., Beaunée G., Camanes G., Guatteo R., Fourichon C., Ezanno P. 2017. Which phenotypic traits of resistance should be improved in cattle to control paratuberculosis dynamics in a dairy herd: a modelling approach. Vet Res 48:62, doi:10.1186/s13567-017-0468-8
  7. Cailly P., Tran A., Balenghien T., L’Ambert G., Toty C., Ezanno P. 2012. A climate-driven abundance model to assess mosquito control strategies. Ecol Model 227, 7-17, doi:10.1016/j.ecolmodel.2011.10.027
  8. Camanes G., Joly A., Fourichon C., Ben Romdhane R., Ezanno P. 2018. Control measures to avoid increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Vet Res 49:60, https://doi.org/10.1186/s13567-018-0557-3
  9. Cavalerie L.*, Charron M.V.P.*, Ezanno P.*, Dommergues L., Zumbo B., Cardinale E. 2015. A stochastic model to study Rift Valley Fever persistence with different seasonal patterns of vector abundance: new insights on the endemicity in the tropical island of Mayotte. PLoS ONE 10(7):e0130838, doi:10.1371/journal.pone.0130838
  10. Cecilia H., Arnoux S., Picault S., Dicko A., Seck M.T., Sall B., Bassène M., Vreysen M., Pagabeleguem S., Bancé A., Bouyer J., Ezanno P. 2019. Environmental heterogeneity drives tsetse fly population dynamics and control. bioRxiv, https://doi.org/10.1101/493650, ver. 3 peer-reviewed and recommended by PCI Ecology (https://dx.doi.org/10.24072/pci.ecology.100024).
  11. Cecilia H., Arnoux S., Picault S., Dicko A., Seck M.T., Sall B., Bassène M., Vreysen M., Pagabeleguem S., Bancé A., Bouyer J., Ezanno P. 2021. Dispersal in heterogeneous environments drives population dynamics and control of tsetse flies. Proceedings of the Royal Society B 20202810. https://doi.org/10.1098/rspb.2020.2810
  12. Cecilia H., Métras R., Fall A.G., Lo M., Lancelot R., Ezanno P. 2020. It’s risky to wander in September: modelling the epidemic potential of Rift valley fever in a Sahelian setting. Epidemics 33, 100409, https://doi.org/10.1016/j.epidem.2020.100409
  13. Cecilia H., Vriens R., Schreur P.W., de Wit M., Métras R., Ezanno P., ten Bosch Q. Heterogeneity of Rift valley fever virus transmission potential across livestock hosts, quantified through a model-based analysis of host viral load and vector infection. PLoS Computational Biology 18(7): e1010314. https://doi.org/10.1371/journal.pcbi.1010314
  14. Charron M., Langlais M., Seegers H., Ezanno P. 2011. Seasonal spread and control of Bluetongue in cattle. J Theor Biol 291, 1-9, doi:10.1016/j.jtbi.2011.08.041
  15. Charron M.V.P., Kluiters G., Langlais M., Seegers H., Baylis M., Ezanno P. 2013. Seasonal and spatial heterogeneities in host and vector abundances impact the spatiotemporal spread of bluetongue. Vet Res 44:44, doi:10.1186/1297-9716-44-44
  16. Courcoul A., Hogerwerf L., Klinkenberg D., Nielen M., Vergu E., Beaudeau F., 2011. Modelling effectiveness of herd level vaccination against Q fever in dairy cattle. Vet. Res., 42(1):68.
  17. Courcoul A., Monod H., Nielen M., Klinkenberg D., Hogerwerf L., Beaudeau F., Vergu E., 2011. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis. J. Theor. Biol., 284(1):130-141.
  18. Courcoul A., Vergu E., Denis J.-B., Beaudeau F., 2010. Spread of Q fever within dairy cattle herds: key parameters inferred using a Bayesian approach. Proceedings of the Royal Society B: Biological Sciences, 277(1695):2857-2865.
  19. Cristancho Fajardo L., Ezanno P., Vergu E. 2021. Integrative modelling of pathogen spread through animal trade by accounting for farmers’ control decisions. Scientific Report 11:9581 https://doi.org/10.1038/s41598-021-88471-6
  20. Cristancho L., Ezanno P., Vergu E. 2022. Dynamic resource allocation for controlling pathogen spread on a large animal metapopulation network. Journal of the Royal Society Interface 19: 20210744. https://doi.org/10.1098/rsif.2021.0744
  21. Cristancho-Fajardo L., Vergu E., Beaunée G., Arnoux S., Ezanno P. 2022. Learning and strategic imitation in modelling farmers’ dynamic decisions on Bovine Viral Diarrhoea vaccination. Veterinary Research 53:102. https://doi.org/10.1186/s13567-022-01112-2
  22. Damman A., Viet A-F, Arnoux S., Guerrier-Chatellet M-C, Petit E, Ezanno P. 2015. Modeling the spread of bovine viral diarrhea virus (BVDV) in a beef cattle herd and its impact on herd productivity. Vet Res 46:12, doi:10.1186/s13567-015-0145-8
  23. Ezanno P., Arnoux S., Joly A., Vermesse R. 2022. Rewiring cattle trade movements helps to control bovine paratuberculosis at a regional scale. Preventive Veterinary Medicine 198:105529. https://doi.org/10.1016/j.prevetmed.2021.105529
  24. Ezanno P., Balenghien T., Arnoux S., Cailly P., Aubry-Kientz M., L’Ambert G., Toty C., Tran A. 2015. A generic climate-driven model to predict mosquito population dynamics and the associated risk of mosquito-borne disease transmission. Prev Vet Med 120(1), 39-50, doi:10.1016/j.prevetmed.2014.12.018
  25. Ezanno P., Beaunée G., Picault S., Arnoux S., Sicard V., Beaudeau F., Rault A., Vergu E. 2018. Gestion des maladies endémiques du troupeau aux territoires : contribution de la modélisation épidémiologique pour soutenir la prise de décision (projet MIHMES, 2012-2017). Innovations Agronomiques 68, 53-65.
  26. Ezanno P., Picault S., Bareille S., Beaunée G., Boender G.J., Dankwa E.A., Deslandes F., Donnelly C.A., Hagenaars T.J., Hayes S., Jori F., Lambert S., Mancini M., Munoz F., Pleydell D.R.J., Thompson R.N., Vergu E., Vignes M., Vergne T. 2022. The African swine fever modelling challenge: model comparison and lessons learnt. Epidemics 40, 100615. https://doi.org/10.1016/j.epidem.2022.100615
  27. Ferrer Savall J., Bidot, C., Leblanc-Maridor M., Belloc C., Touzeau S. 2016 Modelling Salmonella transmission among pigs from farm to slaughterhouse: interplay between management variability and epidemiological uncertainty. Internal J Food Microbiol 229:33–43, doi:10.1016/j.ijfoodmicro.2016.03.020
  28. Go N., Bidot C., Belloc C., Touzeau S., 2014. Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? PLoS ONE, 9(9):e107818, doi:10.1371/journal.pone.0107818
  29. Hoch T., Breton E., Josse M., Deniz A., Guven E., Vatansever Z. 2016. Identifying main drivers and testing control strategies for CCHFV spread. Exp Appl Acarol 68(3):347-359.
  30. Hoch T., Breton E., Vatansever Z. 2018. Dynamic Modeling of Crimean Congo Hemorrhagic Fever Virus (CCHFV) Spread to Test Control Strategies. J Med Entomol. 55:1124-1132. DOI: 10.1093/jme/tjy035
  31. Hoch T., Goebel J., Agoulon A., Malandrin L. 2012. Modelling bovine babesiosis: A tool to simulate scenarios for pathogen spread and to test control measures for the disease. Prev Vet Med 106:136-142.
  32. Hoch T., Monnet Y., Agoulon A. 2010. Influence of host migration between woodland and pasture on the population dynamics of the tick Ixodes ricinus: A modelling approach. Ecol Model 221:1798-1806.
  33. Lambert S., Ezanno P., Garel M., Gilot-Fromont E. 2018. Stochasticity drives epidemiological patterns in wildlife with implications for diseases and population management. Sci Rep 8:16846. doi:10.1038/s41598-018-34623-0
  34. Lupo C., Dutta B.L., Petton S., Ezanno P., Tourbiez D., Travers M-A., Pernet F., Bacher C. 2020. Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality. Aquaculture Environment Interactions 12, 511-527, https://doi.org/10.3354/aei00379
  35. Lupo C., Travers M-A., Tourbiez D., Barthélémy C.F., Beaunée G., Ezanno P. 2019. Modeling the transmission of Vibrio aestuarianus in Pacific oysters using experimental infection data. Front Vet Sci 6:142, https://doi.org/10.3389/fvets.2019.00142
  36. Lurette A., Belloc C., Keeling M., 2011. Contact structure and Salmonella control in the network of pig movements in France. Prev. Vet. Med., 102(1):30-40.
  37. Lurette A., Touzeau S., Ezanno P., Hoch T., Seegers H., Fourichon C., Belloc C. 2011. Within-herd biosecurity and Salmonella seroprevalence in slaughter pigs: a simulation study. J Anim Sci 89, 2210-2219, doi:jas.2010-2916v1-20102916
  38. Marcé C., Ezanno P., Seegers H., Pfeiffer D., Fourichon C. 2011. Predicting fadeout versus persistence of paratuberculosis in a dairy cattle herd for management and control purposes: a modelling study. Vet Res 42:36, doi:10.1186/1297-9716-42-36
  39. Marcé C., Ezanno P., Seegers H., Pfeiffer D., Fourichon C. 2011. Within-herd contact structure and transmission of Mycobacterium avium subspecies paratuberculosis in a persistently infected dairy cattle herd. Prev Vet Med 100, 116-125, doi:10.1016/j.prevetmed.2011.02.004
  40. More S., Cameron A., Strain S., Cashman B., Ezanno P., Kenny K., Fourichon C., Graham D. 2015. Evaluation of testing strategies to identify infected animals at a single round of testing within dairy herds known to be infected with Mycobacterium avium subsp. paratuberculosis. J. Dairy Sci 98:5194–5210
  41. Morel-Journel T., Assié S., Vergu E., Mercier J.-B., Bonnet-Beaugrand F., Ezanno P. 2021. Minimizing the number of origins in batches of weaned calves to reduce their risks of developing bovine respiratory diseases. Veterinary Research 52:5, https://doi.org/10.1186/s13567-020-00872-z
  42. Morel-Journel T., Ezanno P., Vergu E. Rewiring cattle movements to limit infection spread. Veterinary Research (accepted July 2024), preprint: https://doi.org/10.1101/2022.08.24.505123
  43. Morel-Journel T., Mercier J-B., Bareille N., Vergu E., Ezanno P. 2021. Selecting sorting centres to avoid long distance transport of weaned beef calves. Scientific Report 11, 1289. https://doi.org/10.1038/s41598-020-79844-4
  44. Pandit P., Hoch T.*, Ezanno P.*, Beaudeau F., Vergu E. 2016. Q fever spread between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade. Vet Res 47:48, doi:10.1186/s13567-016-0330-4
  45. Picault P., Niang G., Sicard V., Sorin-Dupont B., Assié S., Ezanno P. 2024. Leveraging artificial intelligence and software engineering methods in epidemiology for the co-creation of decision-support tools based on mechanistic models. Preventive Veterinary Medicine - special issue: Artificial Intelligence in Veterinary Epidemiology 228:106233. https://doi.org/10.1016/j.prevetmed.2024.106233; https://hal.inrae.fr/hal-04593328 (preprint: https://biorxiv.org/cgi/content/short/2023.09.03.555060v1)
  46. Picault S., Ezanno P., Smith K., Amrine D., White B., Assié S. 2022. Modelling the effects of antimicrobial metaphylaxis and pen size on bovine respiratory disease in high and low risk fattening cattle. Veterinary Research 53:77. https://doi.org/10.1186/s13567-022-01094-1
  47. Picault S., Huang Y.-L., Sicard V., Arnoux S., Beaunée G., Ezanno P. 2019. EMULSION: transparent and flexible multiscale stochastic models in human, animal and plant epidemiology. PLoS Comput Biol 15(9): e1007342, https://doi.org/10.1371/journal.pcbi.1007342
  48. Picault S., Vergne T., Mancini M., Bareille S., Ezanno P. 2022. The African swine fever modelling challenge: objectives, model description and synthetic data. Epidemics 40, 100616. https://doi.org/10.1016/j.epidem.2022.100616
  49. Qi L., Beaunée G., Arnoux S., Dutta B.L., Joly A., Vergu E., Ezanno P. 2019. Neighbourhood contacts and trade movements drive the regional spread of bovine viral diarrhoea virus (BVDV). Vet Res 50:30, https://doi.org/10.1186/s13567-019-0647-x
  50. Sorin-Dupont B., Picault S., Pardon B., Ezanno P.*, Assié S.* 2023. Modeling the effects of farming practices on bovine respiratory disease in a multi-batch cattle fattening farm. Preventive Veterinary Medicine 106009. [*Contribution équivalente] https://doi.org/10.1016/j.prevetmed.2023.106009
  51. Tran A., L'Ambert G., Lacour G., Benoît R., Demarchi M., Cros M., Cailly P., Aubry-Kientz M., Balenghien T., Ezanno P. 2013. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Internal J Envir Res Public Health, 10(5), 1698-719, doi:10.3390/ijerph10051698
  52. Viet A-F., Krebs S., Rat-Aspert O., Jeanpierre L., Belloc C., Ezanno P. 2018. A modelling framework based on MDP to coordinate farmers' disease control decisions at a regional scale. PLoS ONE 13(6): e0197612, doi:10.1371/journal.pone.0197612